Generalized Cauchy–Schwarz Inequalities and A-Numerical Radius Applications

نویسندگان

چکیده

The purpose of this research paper is to introduce new Cauchy–Schwarz inequalities that are valid in semi-Hilbert spaces, which generalizations Hilbert spaces. We demonstrate how these can be employed derive novel A-numerical radius inequalities, where A denotes a positive semidefinite operator complex space. Some our expand upon the existing literature on numerical with space operators, important tools functional analysis. use techniques from theory prove results and highlight some applications findings.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some numerical radius inequalities with positive definite functions

 ‎Using several examples of positive definite functions‎, ‎some inequalities for the numerical radius of‎ ‎matrices are investigated‎. ‎Also‎, ‎some open problems are stated‎.

متن کامل

Some improvements of numerical radius inequalities via Specht’s ratio

We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...

متن کامل

On the Numerical Radius and Its Applications*

We give a brief account of the numerical radius of a linear bounded operator on a Hilbert space and some of its better-known properties. Both finiteand infinitedimensional aspects are discussed, as well as applications to stability theory of finite-difference approximations for hyperbolic initial-value problems. 1. DEFINITION, BOUNDS, AND EVALUATION Let H be a Hilbert space over the complex fie...

متن کامل

A Research Problem on a Generalized Numerical Radius 1

We present a conjecture which when true would generalize T. Ando's characterization of the numerical radius of (bounded linear) operators on a Hilbert space (see A]). Some evidence for the validity of the conjecture is given. In the nite dimensional case we shall restate the conjecture in terms of convex matrix sets and norms on matrices that are invariant under unitary similarities (u.s.i. nor...

متن کامل

some numerical radius inequalities with positive definite functions

‎using several examples of positive definite functions‎, ‎some inequalities for the numerical radius of‎ ‎matrices are investigated‎. ‎also‎, ‎some open problems are stated‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2023

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms12070712